Exact Gaussian Processes on a Million Data Points Ke Alexander Wang*¹, Geoff Pleiss*¹, Jacob R. Gardner², Stephen Tyree³, Kilian Q. Weinberger¹, Andrew Gordon Wilson⁴ Cornell University, ²Uber Al Labs, ³NVIDIA, ⁴New York University ## Summary - We scale exact GPs to over 10⁶ training points using multi-GPU parallelism and conjugate gradients-based inference. On 10⁶ data points, training takes less than 2 hours. - We demonstrate that **computing predictive distributions**with exact GPs is fast and practical on consumer-grade GPUs. - We perform the first-ever comparison of exact GPs against GP approximations on datasets with 10^4-10^6 data points. ## Background: matrix-multiplication inference Given n training data points (X, \mathbf{y}) , GP training requires optimizing model hyperparameters θ (e.g. kernel lengthscale, observed noise): $$\min_{\theta} y^{\top} \widehat{K}(\theta)_{XX}^{-1} y + \log |\widehat{K}(\theta)_{XX}| \tag{1}$$ $(\widehat{K}(\theta)_{XX})$ is the $n \times n$ covariance matrix with observational noise.) We use Black-Box Matrix-Matrix (BBMM) inference [1] to reduce the time per optimization iteration from $O(n^3)$ to $O(n^2)$ by relying only on matrix multiplications and conjugate gradients (CG). # Scaling GPs from $n = 10^4$ to $n = 10^6$ #### Reducing BBMM's memory from $O(n^2)$ to O(n): Figure 1:Partitioned kernel matrix-vector multiplication. #### Additional techniques to speed up BBMM training: - 1 Distribute the multiplication partitions across multiple GPUs. - 2 Initializing hyperparameters θ from a GP trained on < 10% of data. - Increasing the rank of the pivoted Cholesky preconditioner (from rank-5 to rank-100) to compute $\widehat{K}(\theta)_{XX}^{-1}\mathbf{y}$ - Using a looser CG convergence criterion at train time. Figure 2:Conventional Cholesky-based inference versus multi-GPU CG-based inference. #### Comparisons against approximate methods We compare against approximate GP methods SGPR [2] and SVGP [3], two popular inducing point methods for large scale GP regression. | | | | RMSE | | | NLL | | | |---------------|-----------|-----|-------------------|-------------------------------|---------------------------------|--------------------|-------------------------------|---------------------------------| | Dataset | n | d | Exact GP (BBMM) | $\mathbf{SGPR} \atop (m=512)$ | $\mathbf{SVGP} \atop (m=1,024)$ | Exact GP (BBMM) | $\mathbf{SGPR} \atop (m=512)$ | $\mathbf{SVGP} \atop (m=1,024)$ | | PoleTele | 9,600 | 26 | 0.088 ± 0.003 | 0.113 ± 0.005 | 0.109 ± 0.002 | -0.660 ± 0.081 | -0.817 ± 0.005 | -0.644 ± 0.008 | | Elevators | 10,623 | 18 | 0.399 ± 0.011 | 0.426 ± 0.007 | 0.388 ± 0.010 | 0.626 ± 0.043 | 0.528 ± 0.015 | 0.486 ± 0.019 | | Bike | 11,122 | 17 | 0.043 ± 0.012 | 0.094 ± 0.010 | 0.077 ± 0.005 | -1.323 ± 0.170 | -0.805 ± 0.005 | -0.984 ± 0.021 | | Kin40K | 25,600 | 8 | 0.080 ± 0.001 | 0.225 ± 0.026 | 0.240 ± 0.007 | -0.755 ± 0.009 | -0.073 ± 0.055 | 0.091 ± 0.033 | | Protein | 29,267 | 9 | 0.511 ± 0.009 | 0.619 ± 0.003 | 0.613 ± 0.011 | 0.960 ± 0.033 | 0.915 ± 0.004 | 0.952 ± 0.018 | | KeggDirected | 31,248 | 20 | 0.083 ± 0.001 | 0.104 ± 0.002 | 0.105 ± 0.003 | -0.838 ± 0.031 | -1.163 ± 0.005 | -0.853 ± 0.033 | | CTslice | 34,240 | 385 | 0.497 ± 0.029 | 0.217 ± 0.009 | 1.004 ± 0.005 | 0.939 ± 0.004 | -0.037 ± 0.060 | 1.423 ± 0.005 | | KEGGU | 40,708 | 27 | 0.120 ± 0.001 | 0.130 ± 0.001 | 0.126 ± 0.002 | -0.540 ± 0.035 | -1.049 ± 0.010 | -0.653 ± 0.013 | | 3DRoad | 278,319 | 3 | 0.110 ± 0.017 | 0.578 ± 0.001 | 0.390 ± 0.005 | 1.239 ± 0.025 | 0.791 ± 0.033 | 0.486 ± 0.010 | | Song | 329,820 | 90 | 0.774 ± 0.001 | 0.816 ± 0.038 | 0.998 ± 0.000 | 1.162 ± 0.002 | 1.243 ± 0.083 | 1.417 ± 0.000 | | Buzz | 373,280 | 77 | 0.279 ± 0.002 | 0.289 ± 0.001 | 0.270 ± 0.012 | 0.161 ± 0.026 | 0.092 ± 0.017 | 0.119 ± 0.042 | | HouseElectric | 1,311,539 | 9 | 0.054 ± 0.000 | | 0.127 ± 0.046 | -0.207 ± 0.001 | | 0.024 ± 0.984 | Table 1:Exact GP vs SGPR vs SVGP using a Matern 3/2 kernel with independent lengthscales. ## Training times and prediction times Figure 3:Training, test-time precomputation, and prediction times as a function of dataset size. All predictions for exact GPs can be done in less than a second. ### How much does pretraining help? Figure 4:Fine-tuning on the full training set after pretraining on a smaller subset significantly reduces training time. Models with and without pretraining achieve similar errors with less than 5% difference (not shown here). #### Do GPs need the entire dataset? Figure 5:Test root-mean-square error (RMSE) vs. subsampled dataset size. # Would more inducing points help? Figure 6:Test root-mean-square error (RMSE) of SVGP and SGPR methods as a function of the number of inducing points. #### References - [1] Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. GPyTorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration. In *NeurIPS*, pages 7587–7597, 2018. - [2] Michalis K Titsias. Variational learning of inducing variables in sparse Gaussian processes. In AISTATS, pages 567–574, 2009. - [3] James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data. In UAI , 2013.