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Summary

o We scale exact GPs to over 10° training points using
multi-GPU parallelism and conjugate gradients-based inference. On
10° data points, training takes less than 2 hours.

® We demonstrate that computing predictive distributions
with exact GPs is fast and practical on consumer-grade

GPUs.

© We perform the first-ever comparison of exact GPs against
GP approximations on datasets with 10*—10° data points.

Background: matrix-multiplication inference

Given n training data points (X,y), GP training requires optimizing
model hyperparameters 6 (e.g. kernel lengthscale, observed noise):

min y' K (0) yxy + log |K(0)xx| (1)

(K (6) xx is the n x n covariance matrix with observational noise.)
We use Black-Box Matrix-Matrix (BBMM) inference |1 to reduce the
time per optimization iteration from O(n?) to O(n?) by relying only
on matrix multiplications and conjugate gradients (CG).

Scaling GPs from n = 10? to n = 10°

Reducing BBMM’s memory from O(n?) to O(n):
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Figure 1:Partitioned kernel matrix-vector multiplication.

Additional techniques to speed up BBMM training:

o Distribute the multiplication partitions across multiple GPUs.
@ [nitializing hyperparameters 8 from a GP trained on < 10% of data.

@ Increasing the rank of the pivoted Cholesky preconditioner (from
rank-5 to rank-100) to compute K(60)xxy

o Using a looser CG convergence criterion at train time.
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Figure 2:Conventional Cholesky-based inference versus multi-GPU CG-based inference.

Comparisons against approximate methods

We compare against approximate GP methods SGPR 2| and SVGP
3], two popular inducing point methods for large scale GP regression.

RMSE NLL
Exact GP SGPR SVGP Exact GP SGPR SVGP
Dataset n d (BBMM) (m=>512) (m=1,024) (BBMM) (m=>512) (m=1,024)

PoleTele 9,600 26 0.088 £ 0.003 0.113 £0.005 0.109 £0.002 —0.660 = 0.081 —0.817 &= 0.005 —0.644 £ 0.008
Elevators 10,623 18 0.399 £0.011 0.426 = 0.007 0.388 == 0.010 0.626 = 0.043  0.528 = 0.015  0.486 £ 0.019
Bike 11,122 17 0.043 = 0.012 0.094 £ 0.010 0.077 £0.005 —1.323 = 0.170 —0.805 £ 0.005 —0.984 4 0.021
Kin40K 25,600 8 0.080 £0.001 0.225 4+ 0.026 0.240 &= 0.007 —0.755 £ 0.009 —0.073 = 0.055 0.091 £ 0.033
Protein 29,267 9 0.511 £0.009 0.619 &£ 0.003 0.613 +=0.011  0.960 £0.033 0.915 +=0.004  0.952 £ 0.018
KeggDirected 31,248 20 0.083 £ 0.001 0.104 £0.002 0.105 4+ 0.003 —0.838 +0.031 —1.163 £ 0.005 —0.853 £ 0.033
CTslice 34,240 385 0.497 £ 0.029 0.217 £ 0.009 1.004 £0.005  0.939 £ 0.004 —0.037 = 0.060 1.423 £ 0.005
KEGGU 40,708 27 0.120 £ 0.001 0.130 £0.001 0.126 £0.002 —0.540 £ 0.035 —1.049 = 0.010 —0.653 £ 0.013
3DRoad 278,319 3 0.110 £ 0.017 0.578 £0.001 0.390 £ 0.005  1.239 £0.025  0.791 £0.033  0.486 £ 0.010
Song 329,820 90 0.774 = 0.001 0.816 &£ 0.038 0.998 =0.000 1.162 +=0.002 1.243+£0.083  1.417 = 0.000
Buzz 373,280 77 0.279 £ 0.002 0.289 & 0.001 0.270 =0.012 0.161 £0.026  0.092 = 0.017  0.119 4= 0.042
HouseElectric 1,311,539 9 0.054 £ 0.000 — 0.127 £ 0.046 —0.207 £ 0.001 — 0.024 &= 0.984

Table 1:Exact GP vs SGPR vs SVGP using a Matern 3/2 kernel with independent

lengthscales.
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How much does pretraining help?
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Figure 5:Test root-mean-square error (RMSE) vs. subsampled dataset size.

Would more inducing points help?
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Figure 6:Test root-mean-square error (RMSE) of SVGP and SGPR methods as a

function of the number of inducing points.
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