Exact Gaussian Processes on a Million Data Points

Ke Alexander Wang*¹, Geoff Pleiss*¹, Jacob R. Gardner², Stephen Tyree³, Kilian Q. Weinberger¹, Andrew Gordon Wilson⁴

Cornell University, ²Uber Al Labs, ³NVIDIA, ⁴New York University

Summary

- We scale exact GPs to over 10⁶ training points using multi-GPU parallelism and conjugate gradients-based inference. On 10⁶ data points, training takes less than 2 hours.
- We demonstrate that **computing predictive distributions**with exact GPs is fast and practical on consumer-grade
 GPUs.
- We perform the first-ever comparison of exact GPs against GP approximations on datasets with 10^4-10^6 data points.

Background: matrix-multiplication inference

Given n training data points (X, \mathbf{y}) , GP training requires optimizing model hyperparameters θ (e.g. kernel lengthscale, observed noise):

$$\min_{\theta} y^{\top} \widehat{K}(\theta)_{XX}^{-1} y + \log |\widehat{K}(\theta)_{XX}| \tag{1}$$

 $(\widehat{K}(\theta)_{XX})$ is the $n \times n$ covariance matrix with observational noise.) We use Black-Box Matrix-Matrix (BBMM) inference [1] to reduce the time per optimization iteration from $O(n^3)$ to $O(n^2)$ by relying only on matrix multiplications and conjugate gradients (CG).

Scaling GPs from $n = 10^4$ to $n = 10^6$

Reducing BBMM's memory from $O(n^2)$ to O(n):

Figure 1:Partitioned kernel matrix-vector multiplication.

Additional techniques to speed up BBMM training:

- 1 Distribute the multiplication partitions across multiple GPUs.
- 2 Initializing hyperparameters θ from a GP trained on < 10% of data.
- Increasing the rank of the pivoted Cholesky preconditioner (from rank-5 to rank-100) to compute $\widehat{K}(\theta)_{XX}^{-1}\mathbf{y}$
- Using a looser CG convergence criterion at train time.

Figure 2:Conventional Cholesky-based inference versus multi-GPU CG-based inference.

Comparisons against approximate methods

We compare against approximate GP methods SGPR [2] and SVGP [3], two popular inducing point methods for large scale GP regression.

			RMSE			NLL		
Dataset	n	d	Exact GP (BBMM)	$\mathbf{SGPR} \atop (m=512)$	$\mathbf{SVGP} \atop (m=1,024)$	Exact GP (BBMM)	$\mathbf{SGPR} \atop (m=512)$	$\mathbf{SVGP} \atop (m=1,024)$
PoleTele	9,600	26	0.088 ± 0.003	0.113 ± 0.005	0.109 ± 0.002	-0.660 ± 0.081	-0.817 ± 0.005	-0.644 ± 0.008
Elevators	10,623	18	0.399 ± 0.011	0.426 ± 0.007	0.388 ± 0.010	0.626 ± 0.043	0.528 ± 0.015	0.486 ± 0.019
Bike	11,122	17	0.043 ± 0.012	0.094 ± 0.010	0.077 ± 0.005	-1.323 ± 0.170	-0.805 ± 0.005	-0.984 ± 0.021
Kin40K	25,600	8	0.080 ± 0.001	0.225 ± 0.026	0.240 ± 0.007	-0.755 ± 0.009	-0.073 ± 0.055	0.091 ± 0.033
Protein	29,267	9	0.511 ± 0.009	0.619 ± 0.003	0.613 ± 0.011	0.960 ± 0.033	0.915 ± 0.004	0.952 ± 0.018
KeggDirected	31,248	20	0.083 ± 0.001	0.104 ± 0.002	0.105 ± 0.003	-0.838 ± 0.031	-1.163 ± 0.005	-0.853 ± 0.033
CTslice	34,240	385	0.497 ± 0.029	0.217 ± 0.009	1.004 ± 0.005	0.939 ± 0.004	-0.037 ± 0.060	1.423 ± 0.005
KEGGU	40,708	27	0.120 ± 0.001	0.130 ± 0.001	0.126 ± 0.002	-0.540 ± 0.035	-1.049 ± 0.010	-0.653 ± 0.013
3DRoad	278,319	3	0.110 ± 0.017	0.578 ± 0.001	0.390 ± 0.005	1.239 ± 0.025	0.791 ± 0.033	0.486 ± 0.010
Song	329,820	90	0.774 ± 0.001	0.816 ± 0.038	0.998 ± 0.000	1.162 ± 0.002	1.243 ± 0.083	1.417 ± 0.000
Buzz	373,280	77	0.279 ± 0.002	0.289 ± 0.001	0.270 ± 0.012	0.161 ± 0.026	0.092 ± 0.017	0.119 ± 0.042
HouseElectric	1,311,539	9	0.054 ± 0.000		0.127 ± 0.046	-0.207 ± 0.001		0.024 ± 0.984

Table 1:Exact GP vs SGPR vs SVGP using a Matern 3/2 kernel with independent lengthscales.

Training times and prediction times

Figure 3:Training, test-time precomputation, and prediction times as a function of dataset size. All predictions for exact GPs can be done in less than a second.

How much does pretraining help?

Figure 4:Fine-tuning on the full training set after pretraining on a smaller subset significantly reduces training time. Models with and without pretraining achieve similar errors with less than 5% difference (not shown here).

Do GPs need the entire dataset?

Figure 5:Test root-mean-square error (RMSE) vs. subsampled dataset size.

Would more inducing points help?

Figure 6:Test root-mean-square error (RMSE) of SVGP and SGPR methods as a function of the number of inducing points.

References

- [1] Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. GPyTorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration. In *NeurIPS*, pages 7587–7597, 2018.
- [2] Michalis K Titsias. Variational learning of inducing variables in sparse Gaussian processes. In AISTATS, pages 567–574, 2009.
- [3] James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data. In UAI , 2013.